VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CBCS) III-Semester Backlog (Old) Examinations, December-2018

Engineering Mathematics-III

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE questions from Part-B

Part-A $(10 \times 2=20 \text{ Marks})$

- 1. State the conditions under which a given function can be expanded in Fourier series.
- 2. Find the value of a_0 in the Fourier expansion of the function $f(x) = \begin{cases} 1+t, -1 \le t \le 0 \\ 1-t \end{cases}$, $0 \le t \le 1$
- 3. Deduce the Partial differential equation by elimination of the arbitrary constants a and b from the equation $z = axe^y + \frac{1}{2}a^2e^{2y} + b$
- 4. Explore the solution of the partial differential equation $p q = \frac{z}{x+y}$
- 5. Establish the relation between the operators (i) \triangle and E (ii) ∇ and E^{-1}
- 6. By choosing an appropriate Interpolation formula, construct a second degree polynomial for the following data: (1,3),(2,5),(3,10).
- 7. Write any four properties of the Normal Distribution.
- 8. Prove that E(X + Y) = E(X) + E(Y)
- 9. The equations of two regression lines obtained in a correlation analysis are 3x + 2y = 26 and 6x + y = 31. Find (i) the correlation coefficient r, and (ii) The mean values of x and y
- 10. Show that the limits of correlation coefficient r are $-1 \le r \le +1$

Part-B $(5 \times 10=50 \text{ Marks})$

- 11. a) Expand the function $f(x) = \left(\frac{\pi x}{2}\right)^2$ in $0 \le x \le 2\pi$ [5]
 - b) Find the half range sine and cosine series of f(x) = x, in 0 < x < 2 [5]
- 12. a) Solve the differential equation $z^2(p^2z^2 + q^2) = 1$ [4]
 - b) Solve the partial differential equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ for the conduction of heat along the rod without radiation, subject to the following conductions

(i)
$$u$$
 is not infinite for $t \to \infty$ (ii) $\frac{\partial u}{\partial x} = 0$ for $x = 0$ and $x = l$

$$(iii)u(x,0) = lx - x^2$$
 for $t = 0$, between $x = 0 \& x = l$

13. a) A body is moving with velocity v at any given time t and satisfies the following data [5]

t		0	1	3	4
1	,	21	15	12	10

Obtain the distance travelled in 4 seconds and acceleration at the end of 4 seconds.

b) Obtain the approximate value of y at x = 1 in steps of 0.2 by Euler's method given [5]

$$\frac{dy}{dx} = xy \text{ and } y(0) = 2,$$

- 14. a) If the p.d. f. f(x) = k(x+3)in (2,8), determine the value of k and [5] (i)P(3 < x < 5), $(ii) P(x \ge 4)$
 - b) Derive the mean and Variance of Normal distribution. [5]
- 15. a) If θ is the angle between the two regression lines in the case of two variables x and y, [5] Show that $tan\theta = \left(\frac{1-r^2}{r}\right)\frac{\sigma_x\sigma_y}{\sigma^2_x+\sigma^2_y}$, and interpret the result for different values of θ .
 - b) Calculate the coefficient of correlation and obtain the least square regression lines for the following data:

-	x	1	2	3	4	5
-	у	2	5	3	8	7

- Find the Fourier series for the function $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 x, & 1 < x < 2 \end{cases}$ [5]
 - b) Solve the partial differential equation $2(z + xp + yq) = yp^2$ by Charpit's method. [5]
- 17. Answer any two of the following:
 - a) Determine y'(0) and y''(0) for the following data: [5]

-	x	0	1	2	3	4	5
-	у	4	8	15	7	6	2

- b) The marks X obtained in mathematics by 1000 students is normally distributed with mean 78% and standard deviation 11%. Determine (i) How many students got marks above 90%? (ii) What was the highest mark obtained by the lowest 10% of students?
- c) The following table gives the number of aircraft accidents that occurred during the various days of the week. Find whether the accidents are uniformly distributed over the week.

Day	Sun	Mon	Tue	Wed	Thu	Fri	Sat
No. of accidents	14	16	8	12	11	9	14
